FINISH SPECIFICATIONS FOR PIERCE NUTS & PIERCE STUDS

DETAILED FINISH DESCRIPTIONS AND REQUIREMENTS

S

PLAIN- NO SUPPLEMENTARY FINISH REQUIRED OTHER THAN THE FINISH CONSIDERED THE NORMAL RESULT OF MANUFACTURING PROCESSES FOR THE MATERIAL AND PRODUCT INVOLVED.

S300

PLAIN- NO SUPPLEMENTARY FINISH REQUIRED OTHER THAN THE FINISH CONSIDERED THE NORMAL RESULT OF MANUFACTURING PROCESSES FOR THE MATERIAL AND PRODUCT INVOLVED.

ISO METRIC THREADED STEEL PARTS WITH NO SUPPLEMENTARY FINISH SHALL BE LUBRICATED IN LINE WITH WSD-M13P7-A AND SHALL MEET THE REQUIREMENTS FOR TORQUE/CLAMPING FORCE SPECIFIED IN WX 100.

S301

SILVER/SILVER GREY CORROSION PROTECTION COATING- WITH A SELF LUBRICATION SYSTEM CONSTITUENT (LONG TERM CORROSION PROTECTION). THESE ARE CORROSION PROTECTION COATINGS WHICH ARE HEAT CURED FROM A SOLVENT BASED DISPERSION OF ZINC FLAKE AND/OR ZINC PARTICLES AND ORGANIC MATERIALS AS SPECIFIED IN WSD-M21P11-B1 OR AN AQUEOUS DISPERSION OF ZINC FLAKE, CHROMIUM SALTS AND ORGANIC MATERIALS AS SPECIFIED IN WSD-M21P13-A3 WITH AN ADDITIONAL SELF LUBRICATION SYSTEM CONSTITUENT REQUIREMENT FOR BOTH.

ISO METRIC THREADED PARTS SHALL MEET THE TORQUE/CLAMPING FORCE REQUIREMENTS SPECIFIED IN WZ 100.

S302

BLACK ORGANIC CORROSION PROTECTION COATINGS- WITHOUT SUPPLEMENTARY LUBRICATION (SHORT TERM CORROSION PROTECTION). THESE FINISHES ARE BLACK ORGANIC PROTECTIVE COATINGS 35 UNITS SUB-GLOSS WHEN TESTED IN ACCORDANCE WITH FORD LABORATORY TEST METHOD BL 110-1. THEY ARE ELECTROPHORETICALLY COATED, LOW TEMPERATURE HEAT CURED FROM WATER BASED ORGANIC MEDIA. THEY SHALL MEET THE REQUIREMENTS SPECIFIED IN WSD-M21P10-B1.

NOTE: PARTS SHALL NOT BE SUPPLIED IN AN OILED CONDITION.

S303

BLACK ORGANIC CORROSION PROTECTION COATING- (LONG TERM CORROSION PROTECTION). THESE FINISHES ARE BLACK ORGANIC PROTECTIVE COATINGS 35 UNITS SUB-GLOSS WHEN TESTED IN ACCORDANCE WITH FOR LABORATORY TEST METHOD BL 110-1. THEY ARE LOW TEMPERATURE HEAT CURED FROM ORGANIC MEDIA. THEY SHALL MEET THE REQUIREMENTS SPECIFIED IN WSD-M21P10-B1.

NOTE: PARTS SHALL NOT BE SUPPLIED IN AN OILED CONDITION.

ISO METRIC THREADED PARTS SHALL MEET THE REQUIREMENTS FOR TORQUE/CLAMPING FORCE SPECIFIED IN WZ 100.

IF A LUBRICATION PROCESS IS REQUIRED TO SATISFY THIS REQUIREMENT IT WILL BE AN INTEGRAL DRY SELF LUBRICATION SYSTEM.

WHEN THIS COATING IS SPECIFIED, S306 OR S307 MAY BE SUPPLIED AS ALTERNATIVES.

S304

NOTE: PARTS SHALL NOT BE SUPPLIED IN AN OILED CONDITION.

S304M

ZINC PLATE- CLEAR CHROMATE PASSIVATED WITHOUT SUPPLEMENTARY LUBRICATION (MEDIUM TERM CORROSION PROTECTION). SHALL MEET ALL REQUIREMENTS SPECIFIED FOR S304 BUT SHALL BE MECHANICALLY PLATED ONLY.

NOTE: PARTS SHALL NOT BE SUPPLIED IN AN OILED CONDITION.
FINISH SPECIFICATIONS FOR PIERCE NUTS & PIERCE STUDS

DETAILED FINISH DESCRIPTIONS AND REQUIREMENTS

S305 ENAMEL- BLACK. THIS FINISH CONSISTS OF A PHOSPHATE COAT FOLLOWED BY TWO COATS OF BAKED ZINC CHROMATE PRIMER PAINT BLACK IN COLOR. PARTS SHALL WITHSTAND 96 HOURS SALT SPRAY TEST WITHOUT CORROSION PRODUCT FORMATION (SEE CLAUSE 5).

WHEN THIS COATING IS SPECIFIED, S306 AND S307 MAY BE SUPPLIED AS ALTERNATIVE.

S306 BLACK ORGANIC CORROSION PROTECTION COATING- (LONG TERM CORROSION PROTECTION). THESE FINISHES ARE BLACK ORGANIC PROTECTIVE COATINGS 35 UNITS SUB-GLOSS WHEN TESTED IN ACCORDANCE WITH FORD LABORATORY TEST METHOD BL 110-1. THEY ARE LOW TEMPERATURE HEAT CURED FROM ORGANIC MEDIA AS SPECIFIED IN WSD-M21P10-B3.

ISO METRIC THREADED PARTS SHALL MEET THE REQUIREMENTS FOR TORQUE/CLAMPING FORCE SPECIFIED IN WZ 100.

IF A LUBRICATION PROCESS IS REQUIRED TO SATISFY THIS REQUIREMENT IT WILL BE AN INTEGRAL DRY SELF LUBRICATION SYSTEM.

WHEN THIS COATING IS SPECIFIED, S307 MAY BE SUPPLIED AS AN ALTERNATIVE.

ISO METRIC THREADED PARTS SHALL MEET THE REQUIREMENTS FOR TORQUE/CLAMPING FORCE SPECIFIED IN WZ 100.

IF A LUBRICATION PROCESS IS REQUIRED TO SATISFY THIS REQUIREMENT IT WILL BE AN INTEGRAL DRY SELF LUBRICATION SYSTEM.

NOTE: PARTS SHALL NOT BE SUPPLIED IN AN OILED CONDITION.

ISO METRIC THREADED PARTS SHALL BE LUBRICATED AND SHALL MEET THE REQUIREMENTS FOR TORQUE/CLAMPING FORCE SPECIFIED IN WZ 100.

THE COLOR OF THE PARTS WHEN RECEIVED BY FORD SHALL BE READILY IDENTIFIABLE AND MAY VARY BETWEEN GOLD AND BRONZE.

S309M ZINC PLATE- CHROMATE PASSIVATED (MEDIUM TERM CORROSION PROTECTION). SHALL MEET ALL REQUIREMENTS SPECIFIED FOR S309 BUT SHALL BE MECHANICALLY PLATED ONLY.

FINISH SPECIFICATIONS FOR PIERCE NUTS & PIERCE STUDS
DETAILED FINISH DESCRIPTIONS AND REQUIREMENTS

S401 TO S499 SERIES

SPECIAL- THESE FINISH CODES IDENTIFY THE REQUIREMENTS FOR SPECIAL PROTECTIVE FINISHES NOT LISTED IN THESE SPECIFICATIONS. THESE FINISHES ARE DETAILED IN A SERIES OF SPECIFICATIONS WITH A BASE NUMBER WSD-M21P19-AXX SPECIFICATION FOR SPECIAL FINISHES. FOR EXAMPLE: S403 IS DETAILED IN WSD-M21P19-A3.

IN WHITE (COLOR KEYED) PARTS- WHEN STANDARD OR UTILITY PARTS ARE DESIGNATED "IN WHITE" AND ARE THEREFORE REQUIRED TO COMPLY WITH A COLOR CHART OR MASTER SAMPLE, THEY SHALL BE RELEASED WITH THE SUFFIX SSW.

SEE THE FOLLOWING PAGES FOR MATERIAL AND PHYSICAL PROPERTIES:
PIERCE NUTS- PG. 7 & 8
PIERCE STUDS- PG. 13-15
PIERCE NUTS
MATERIAL, PHYSICAL PROPERTIES AND PERFORMANCE

1. SCOPE

THIS STANDARD COVERS THE MATERIAL, PHYSICAL PROPERTIES AND PERFORMANCE REQUIREMENTS OF SELF-PIERCING NUTS IN THE RANGE M6 TO M12 INCLUSIVE.

REFERENCE:
ISO 3573- HOT-ROLLED CARBON STEEL SHEET OF COMMERCIAL AND DRAWING QUALITIES.
ISO 3574- COLD-REDUCED CARBON STEEL SHEET OF COMMERCIAL AND DRAWING QUALITIES.

2. MATERIAL AND PHYSICAL PROPERTIES

THE MATERIAL AND PHYSICAL PROPERTIES OF PIERCE STUDS SHALL BE IN ACCORDANCE WITH WE952. AFTER INSTALLATION OF A THREAD ROLLING SCREW, THESE NUTS SHALL WITHSTAND THE PROOF LOAD EQUIVALENT TO PROPERTY CLASS 8.

3. GENERAL

NUTS SHALL BE CAPABLE OF PIERCING THEIR OWN HOLE IN A TEST PLATE DESCRIBED IN SECTION 5.

4. PERFORMANCE

NOTE: IN ALL TESTS, DAMAGE PERTAINS TO NUT LOOSENING, PANEL DISTORTION IS ALLOWABLE.

PUSH-OUT
AFTER ASSEMBLY IN A STEEL SHEET PANEL OF THE THICKNESS SPECIFIED IN TABLE 1 THE ASSEMBLY MUST BE PLACED ON A TEST RIG AS SHOWN IN FIGURE 1 AND A LOAD APPLIED IN THE DIRECTION SHOWN. THE ASSEMBLY MUST WITHSTAND THE PUSH-OUT LOAD SPECIFIED IN TABLE 1 WITHOUT LOOSENING IN THE PANEL, OR SHOWING EVIDENCE OF DAMAGE WHEN EXAMINED AT 10X MAGNIFICATION.

TORQUE-OUT
AFTER ASSEMBLY IN A STEEL SHEET PANEL OF THE THICKNESS SPECIFIED IN TABLE 1 THE ASSEMBLY MUST BE PLACED IN A TEST RIG AS SHOWN IN FIGURE 2 AND A TORQUE APPLIED IN THE DIRECTION SHOWN. THE ASSEMBLY MUST WITHSTAND THE TORQUE-OUT LOAD SPECIFIED IN TABLE 1 WITHOUT TURNING OR LOOSENING IN THE PANEL.

5. TEST PLATE

THE TEST PLATE SHALL BE 0.2% MAXIMUM CARBON STEEL TO ISO 3573 OR ISO 3574 AND THICKNESSES AS SPECIFIED IN TABLE 1.
PIERCE NUTS
MATERIAL, PHYSICAL PROPERTIES AND PERFORMANCE

TABLE 1

<table>
<thead>
<tr>
<th>NOMINAL SIZE</th>
<th>TEST PLATE THICKNESS T</th>
<th>MINIMUM PUSH-OUT (kN)</th>
<th>MINIMUM TORQUE-OUT (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>1 ±0.08</td>
<td>0.9</td>
<td>7.4</td>
</tr>
<tr>
<td>M6</td>
<td>1 ±0.08</td>
<td>0.9</td>
<td>12.4</td>
</tr>
<tr>
<td>M8</td>
<td>1 ±0.08</td>
<td>0.9</td>
<td>30.0</td>
</tr>
<tr>
<td>M10</td>
<td>1 ±0.08</td>
<td>1.3</td>
<td>60.0</td>
</tr>
<tr>
<td>M12</td>
<td>1.5 ±0.08</td>
<td>1.5</td>
<td>105.0</td>
</tr>
</tbody>
</table>

NOTE: LOWER VALUES WILL APPLY IF THE TEST PLATE IS UNDER 1.0mm.

FIGURE 1
APPLIED LOAD

MATERIAL THICKNESS = T

FIGURE 2
TORQUE APPLIED TO NUT BODY

MATERIAL THICKNESS = T
Threading High Stress Pierce Nut

Diagram

- **F**: Threaded hole
- **G**: Metal range
- **H**: Tap hole size
- **N**: Additional local distortion

Dimensions

- **N**: 11.61
- **E**: 9.35
- **F**: 0.64
- **M**: 5.21
- **H**: 14.22
- **G**: 7.14

Table

<table>
<thead>
<tr>
<th>Ref. NAAO Old No.</th>
<th>N802961</th>
<th>N802367</th>
<th>N802793</th>
<th>N804313</th>
<th>N803717</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ford Part Number</td>
<td>W520650</td>
<td>W520651</td>
<td>W520655</td>
<td>W520652</td>
<td>W520656</td>
</tr>
<tr>
<td>TAP HOLE SIZE</td>
<td>M5</td>
<td>M6</td>
<td>M6</td>
<td>M8</td>
<td>M8</td>
</tr>
<tr>
<td>PITCH</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>"N"</td>
<td>+ 0.00</td>
<td>- 0.33</td>
<td>11.61</td>
<td>14.22</td>
<td>14.22</td>
</tr>
<tr>
<td>"E"</td>
<td>+/-0.13</td>
<td></td>
<td>9.35</td>
<td>10.97</td>
<td>10.97</td>
</tr>
<tr>
<td>"F"</td>
<td>+ 0.00</td>
<td>- 0.10</td>
<td>0.64</td>
<td>0.64</td>
<td>1.40</td>
</tr>
<tr>
<td>"M"</td>
<td>+/-0.13</td>
<td></td>
<td>18.03</td>
<td>20.62</td>
<td>20.62</td>
</tr>
<tr>
<td>"H"</td>
<td>+/-0.08</td>
<td></td>
<td>5.21</td>
<td>7.14</td>
<td>7.90</td>
</tr>
<tr>
<td>"G"</td>
<td>+/-0.13</td>
<td></td>
<td>11.35</td>
<td>13.89</td>
<td>15.24</td>
</tr>
<tr>
<td>Metal Range</td>
<td>0.64</td>
<td>0.64</td>
<td>0.64</td>
<td>1.40</td>
<td>1.40</td>
</tr>
</tbody>
</table>

Additional Information

- Thread ISO 261 & 965 (6H/6G - must meet 6H after installation)
- Material & Performance: See WE 961 - Property Class 8 (EAO)
- Finish: WX100 Property Class 9 (NAAO)

For Application

See [WDX10-50M](#)

Pages 3 & 7.

DATE: MAY 2000

SECTION: W-DX 10-4M

PAGE: 9

MISCELLANEOUS DIES & EQUIPMENT
BLANK HIGH STRESS PIERCE NUT

HOLE SIZE

ADDITIONAL LOCAL DISTORTION OF 0.15mm PER SIDE MAY BE EXPERIENCED.

<table>
<thead>
<tr>
<th>REF. NAAO OLD NO.</th>
<th>N803267</th>
<th>N803276</th>
<th>N806566</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORD PART NUMBER</td>
<td>W520660</td>
<td>W520661</td>
<td>W520662</td>
</tr>
<tr>
<td>NOMINAL SIZE</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>HOLE SIZE +/-0.05</td>
<td>4.6</td>
<td>5.5</td>
<td>7.35</td>
</tr>
<tr>
<td>"N" +/-0.00</td>
<td>11.61</td>
<td>11.61</td>
<td>14.22</td>
</tr>
<tr>
<td>"E" +/-0.13</td>
<td>9.35</td>
<td>9.35</td>
<td>10.97</td>
</tr>
<tr>
<td>"F" +/-0.10</td>
<td>0.64</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>"M" +/-0.13</td>
<td>18.03</td>
<td>18.03</td>
<td>20.62</td>
</tr>
<tr>
<td>"H" +/-0.08</td>
<td>5.21</td>
<td>5.21</td>
<td>7.14</td>
</tr>
<tr>
<td>"G" +/-0.13</td>
<td>11.35</td>
<td>11.35</td>
<td>13.89</td>
</tr>
<tr>
<td>METAL RANGE</td>
<td>0.64 - 2.29</td>
<td>0.64 - 2.29</td>
<td>0.64 - 2.29</td>
</tr>
</tbody>
</table>

MATERIAL & PERFORMANCE: SEE WE 961 - PROPERTY CLASS 8 (EAO)
FINISH: WX100
FOR APPLICATION
SEE [WDX10-50M]
PAGES 3 & 7.
PIERCE STUDS
MATERIAL, PHYSICAL PROPERTIES AND PERFORMANCE

1. SCOPE

This standard covers the material, physical properties and performance requirements of self-piercing studs in the range M5 to M10 inclusive.

REFERENCE:
ISO 3573- Hot-rolled carbon steel sheet of commercial and drawing qualities.
ISO 3574- Cold-reduced carbon steel sheet of commercial and drawing qualities.

2. MATERIAL AND PHYSICAL PROPERTIES

The material and physical properties of Pierce studs shall be in accordance with WA950 property class 8.8.

3. GENERAL

Studs shall be capable of piercing their own hole in a test plate as described in section 5. After assembly parts shall be perpendicular to the test plate within 1°. Stress cracks radially orientated on the coined barrel of the stud after assembly are permissible provided the assembled stud meets all other requirements of the specification.

4. PERFORMANCE

Note: In all tests, damage pertains to stud loosening, panel distortion is allowable.

PUSH-OUT
After assembly in a steel sheet panel of the thickness specified in Table 1 the assembly must be placed on a test rig as shown in Figure 1 and a load applied in the direction shown. The assembly must withstand the push-out load specified in Table 1 without loosening in the panel, or showing evidence of damage when examined at 10x magnification.

PULL-OUT
After assembly in a steel sheet panel of the thickness specified in Table 1 the assembly must be placed in a test rig as shown in Figure 2 and a load applied in the direction shown. The assembly must withstand the pull-out load specified in Table 1 without loosening in the panel, or showing evidence of damage when examined at 10x magnification.

TORQUE-TO-TURN
After assembly in a steel sheet panel of the thickness specified in Table 1 the assembly must be placed in a test rig as shown in Figure 3 and a torque applied in the direction shown. The assembly must withstand the torque-to-turn load specified in Table 1 without turning or loosening in the panel.

IN-PLACE DIMENSIONS
Figure 4 and Table 2 show the in-place dimensions.

5. TEST PLATE

The test plate shall be 0.2% maximum carbon steel to ISO 3573 or ISO 3574 and thicknesses as specified in Table 1.
PIERC STUDS
MATERIAL, PHYSICAL PROPERTIES AND PERFORMANCE

TABLE 1

<table>
<thead>
<tr>
<th>NOMINAL SIZE</th>
<th>TEST PLATE THICKNESS T</th>
<th>MINIMUM PUSH-OUT kN</th>
<th>MINIMUM PULL-OUT kN</th>
<th>MINIMUM TORQUE-TO-TURN Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>1 ±0.08</td>
<td>1.0</td>
<td>1.0</td>
<td>7.4</td>
</tr>
<tr>
<td>M6</td>
<td>1 ±0.08</td>
<td>1.0</td>
<td>1.0</td>
<td>12.4</td>
</tr>
<tr>
<td>M8</td>
<td>1 ±0.08</td>
<td>1.0</td>
<td>1.0</td>
<td>30</td>
</tr>
<tr>
<td>M10</td>
<td>1 ±0.08</td>
<td>1.0</td>
<td>1.0</td>
<td>60</td>
</tr>
</tbody>
</table>

FIGURE 1
APPLIED LOAD

MATERIAL THICKNESS = T

NOTE: \(\phi B = \phi P + 2T + 3\)mm

FIGURE 2
APPLIED LOAD

MATERIAL THICKNESS = T

NOTE: \(\phi B = \phi P + 2T + 3\)mm
PIERCED STUDS
MATERIAL, PHYSICAL PROPERTIES AND PERFORMANCE

FIGURE 3
APPLIED TORQUE

MATERIAL THICKNESS = T

NOTE: \(\phi_B = \phi_P + 2T + 3\text{mm} \)

HARDENED BLOCK
WITH HEAD OF STUD
CENTRALLY LOCATED

TABLE 2

<table>
<thead>
<tr>
<th>METAL THICKNESS</th>
<th>M5</th>
<th>M6</th>
<th>M8</th>
<th>M10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>R</td>
<td>X</td>
<td>R</td>
</tr>
<tr>
<td>0.75-1.24</td>
<td>4.8</td>
<td>14.5</td>
<td>4.9</td>
<td>14.9</td>
</tr>
<tr>
<td>1.25-1.74</td>
<td>4.7</td>
<td>14.9</td>
<td>5.1</td>
<td>14.9</td>
</tr>
<tr>
<td>1.75-2.00</td>
<td>4.7</td>
<td>15.2</td>
<td>4.7</td>
<td>15.0</td>
</tr>
<tr>
<td>1.75-2.25</td>
<td></td>
<td></td>
<td>5.1</td>
<td>19.5</td>
</tr>
<tr>
<td>1.75-1.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00-2.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 4

X REF.

R REF.

SLUG

DATE
MAY 1995

MISCELLANEOUS DIES & EQUIPMENT
SECTION W-DX 10-4M
PAGE 15
SELF-PIERCING STUD

DESIGN OF ANTI-ROTATIONAL FEATURE AT THE DISCRETION OF THE MANUFACTURER.

<table>
<thead>
<tr>
<th>NOMINAL THREAD SIZE</th>
<th>PITCH</th>
<th>A ±0.5</th>
<th>D ±0.5</th>
<th>F ±0.5</th>
<th>G MAX. (REF.)</th>
<th>J MAX. (REF.)</th>
<th>PANEL RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>0.8</td>
<td>10.3</td>
<td>7.7</td>
<td>12.0</td>
<td>2.75</td>
<td>3.6</td>
<td>0.75-2.00</td>
</tr>
<tr>
<td>M6</td>
<td>1.0</td>
<td>10.3</td>
<td>8.7</td>
<td>12.0</td>
<td>3.25</td>
<td>4.4</td>
<td>0.75-2.00</td>
</tr>
<tr>
<td>M8</td>
<td>1.25</td>
<td>11.4</td>
<td>11.2</td>
<td>15.5</td>
<td>4.3</td>
<td>5.8</td>
<td>0.75-2.25</td>
</tr>
<tr>
<td>M10</td>
<td>1.5</td>
<td>14.0</td>
<td>14.0</td>
<td>19.0</td>
<td>5.3</td>
<td>7.8</td>
<td>0.75-2.25</td>
</tr>
</tbody>
</table>

NOMINAL THREAD SIZE | "L" |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

FORD PART NUMBERS

M5: W503400, W503401, W503402, W503403, W503404, W503405
M6: W503406, W503407, W503408, W503409, W503410, W503411
M8: W503412, W503413, W503414, W503415, W503416, W503417
M10: W503418, W503419, W503420, W503421, W503422, W503423

FOR APPLICATION SEE [WDX10-52M]

PROPERTY CLASS 8.8
THREAD CLASS 4g6g
MATERIAL & PERFORMANCE: SEE WA961

PAGE 5.

DATE
MAY 1995
SELF-PIERCING STUD

FOR REPLACEMENT ONLY

<table>
<thead>
<tr>
<th>NORTH AMERICA ONLY NUMBER</th>
<th>MANUFACTURER'S NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>N805983</td>
<td>P8M250DL</td>
</tr>
<tr>
<td>N806245</td>
<td>P8M160</td>
</tr>
<tr>
<td>N806349</td>
<td>P8M230DL</td>
</tr>
<tr>
<td>N806574</td>
<td>P1M000200CC</td>
</tr>
<tr>
<td>N806575</td>
<td>P1M000250CC</td>
</tr>
<tr>
<td>N806576</td>
<td>P1M300DD</td>
</tr>
<tr>
<td>N806753</td>
<td>P6M200DD</td>
</tr>
<tr>
<td>N806822</td>
<td>P8M425DJ</td>
</tr>
<tr>
<td>N807141</td>
<td>P8M000200DD</td>
</tr>
<tr>
<td>N807331</td>
<td>P6M300</td>
</tr>
<tr>
<td>N807429</td>
<td>P8M300DN</td>
</tr>
<tr>
<td>N807471</td>
<td>P6M250DD</td>
</tr>
<tr>
<td>N807831</td>
<td>P6M120DD</td>
</tr>
<tr>
<td>N808486</td>
<td>P6M300DD</td>
</tr>
</tbody>
</table>

STUD SIZE
- 06 = M6
- 08 = M8
- 10 = M10

STUD LENGTH
- IN MILLIMETERS

For application see WDX10-52M page 5.